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The main objective of this study is to investigate pad stiffness effects on the instability
of a nonlinear brake squeal model. Hence, a nonlinear mathematical model is developed.
The nonlinear model is linearized to check the system stability through complex eigenvalue
analysis. The results of linear stability analyses are compared to the numerical solution
of the nonlinear model, and it is observed that the dynamic behavior predicted by the
linear stability analysis is in accordance with the numerical solutions. Though, a discrepancy
may occur at the predicted squeal frequencies with both approaches, especially at high pad
stiffness levels.
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1. Introduction

A wide variety of noise and vibration problems are observed in automotive disc brake systems.
In the traditional classification, these problems are classified based on dominant frequencies as
shown in Fig. 1 (Stojanovic et al., 2022). Though, a phenomenological classification is also given
in the literature, where the problems are classified based on physical mechanisms such as forced
vibrations, vibrations primarily due to friction characteristics, and resonance effects (Jacobsson,
2003).

Fig. 1. Traditional classification of brake vibration and noise problems (Stojanovic et al., 2022)

High frequency brake squeal noise has become an important vehicle comfort problem, even
if it does not affect driving safety. Since the problem is in high frequency bands, these vibrations
spread in the form of acoustic modes leading to brake noise problem (Kinkaid et al., 2003). Al-
though the problem of interest has been studied for nearly a century, and an extensive literature
exists; a general solution to the brake squeal problem that can be applied to all automotive brake
systems has not yet been developed (Papinniemi et al., 2002). It is known that some proposed
models are only suitable for certain systems and even in these systems they cannot always detect
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the problem definitively. This is mainly due to the fact that the squeal phenomenon is mainly
governed by friction which is not fully understood. Therefore, the mechanisms that cause the
brake noise problem has not been adequately examined and the problem is still open to research.

The underlying physics leading to high frequency brake squeal noise is usually attributed
to the resonance phenomenon, i.e., the natural frequency of the brake system is excited by
nonconservative friction forces through several physical mechanisms; thus the system becomes
dynamically unstable. In general, these physical mechanisms are defined as follows: 1) Stick-slip
phenomenon with negative damping; 2) Sprag-slip phenomenon; 3) Self-excited vibrations with a
constant friction coefficient; 4) Splitting or coupling of vibration modes; 5) Hammering (Kinkaid
et al., 2003).

In the existing literature, a wide variety of low order linear and nonlinear mathematical
models are available, which are proposed for brake squeal investigation. In one study by Wang
et al. (2014), the authors investigated squeal instability through numerical solutions of a four
degree of freedom nonlinear disc brake system model. The results showed that the pad stiffness
and disc velocity had significant effects on the initiation of squeal instability due to nonlinear
effects of friction characteristics and contact loss. In another paper by Li et al. (2016), the au-
thors developed a nonlinear mathematical model of a mass-sliding belt system and investigated
the effects of preload and nonlinear contact stiffness on squeal instability. The authors observed
that the surface separation between the mass and the sliding belt significantly altered the effects
of preload and contact stiffness. In the study by Ghorbel et al. (2020), the validity of linear
stability analysis was investigated through a two degree of freedom disc brake system model.
The authors examined the effects of gyroscopic factors, damping and pad geometry via linear
stability analysis, and obtained time domain solutions through numerical solutions of their non-
linear model. Consequently, the authors obtained a good match between the results of linear
stability analysis and numerical solutions. In another study by Dakel and Sinou, where linear
stability analysis was utilized, mode coupling instability was numerically investigated with a
four degree of freedom system that exhibited friction nonlinearity (Dakel and Sinou, 2017). The
linear stability analysis was carried out on through complex eigenvalue analysis of linearized
governing equations, and the Hopf bifurcation points as a function of the kinetic friction coeffi-
cient were determined. Hochlenert used a linear stability analysis approach on a twelve degree
of freedom disc brake model and investigated effects of the friction coefficient and disc angular
velocity on stability of the system (Hochlenert, 2009). The author observed that the effect of the
friction coefficient on dynamic instability vanished at high disc angular velocity and the effect
of disc angular velocity disappeared at a high friction coefficient. Kang investigated the effect of
friction coefficient characteristics on squeal instability on a two degree of freedom mathematical
model (Kang, 2018). The author assumed a smooth friction-velocity curve (Stribeck type) and
observed that the dynamic response of the system depended significantly on friction-velocity
curve characteristics. Hoffmann et al. (2002) investigated the mode coupling instability through
a two degree of freedom model by a time-series response and complex eigenvalue analysis.

Furthermore, the linear stability analysis approach on the investigation of squeal behavior
was found to be misleading in some studies (Liu and Ouyang, 2020; Sinou, 2010; Zhang et al.,
2016). Liu and Ouyang studied the dynamics of a disc brake system with a five degree of freedom
mathematical model by numerical and analytical means. The authors included the effects due
to contact stiffness, stick-slip and geometrical nonlinearities in their model and concluded that
a nonlinear stability analysis was crucial for detection of squeal instability (Liu and Ouyang,
2020). Sinou claimed that the stability analysis performed on the linearized system provided
limited information about dynamic behavior of the system. Thus, the author suggested the
use of numerical solutions of nonlinear governing equations for a precise investigation (Sinou,
2010). Zhang et al. (2016) stated that complex eigenvalue analysis applied to linearized models
may lead to misinterpretations, probably due to inherent nonlinearities that have significant
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effects on dynamics of the system. In yet another study by Belhocine and Ghazaly, the authors
investigated the squeal phenomenon through a finite element model of the disc brake assembly,
which was experimentally validated via modal testing. The authors performed stability analysis
on the model and investigate the effect of Young’s modulus of brake system components on the
occurrence of high frequency squeal noise (Belhocine and Ghazaly, 2016).

In this study, the squeal phenomenon is investigated mathematically while utilizing a friction
model obtained through experimentation on a mass-sliding belt test setup. First, a nonlinear
mathematical model is developed to investigate the effect of preload on the system. Second, the
nonlinear model is linearized, and its stability is assessed through complex eigenvalue analysis
for different operating conditions, which are preload and belt velocity. The values of the critical
pad stiffness at which the system switches from a stable to unstable regime are determined for
various operating conditions, and the effects of the preload and belt velocity on the critical pad
stiffness are determined. Third, the nonlinear governing equations are numerically solved for
the same operating conditions; the results are compared to the linear stability analysis. It is
observed that both models exhibit similar dynamic behavior from the perspective of predicting
dynamic behavior of the system. Finally, the effect of pad stiffness on surface separation at the
contact interface is numerically investigated through the nonlinear model, and the performance
of the linear stability analysis is assessed by comparing the calculated squeal frequencies. It is
observed that an increase of pad stiffness leads to significant surface separation effects, which
leads to nonlinear dynamic behavior. Thus, the squeal frequencies predicted with linear stability
analysis start to deviate from the numerical solutions of nonlinear equations at high pad stiffness
levels.

The key assumptions in this current study can be listed as follows: 1) Damping is ignored in
the mathematical modeling since there is no significant damping in a real physical brake system.
2) The springs utilized in the mathematical model are all assumed to have linear characteristics.
This is a reasonable assumption due to minor deformations observed in these springs. 3) For
linearization of the governing equations, the discontinuous ‘sgn’ function in nonlinear governing
equations is replaced with a continuous ‘tanh’ function. This assumption may lead to a fail-
ure, especially at solution points near the discontinuity. However, this assumption is required
for the linear stability analysis. 4) The surface separation effect is also ignored in the linear
stability analysis. Though, it is shown in the study that squeal frequencies determined from
the linearized model start to deviate from the nonlinear model as the surface separation effect
becomes significant.

A flowchart of this study is shown below in Fig. 2, where the experimental and computa-
tional findings are depicted in detail. Furthermore, the novelty of this study is the fundamental
understanding of the effects of operating parameters (angular configuration, preload and belt
velocity) on the critical pad stiffness and the effect of pad stiffness on the surface separation at
the contact interface.

2. Nonlinear two degree of freedom mathematical model

A nonlinear two degree of freedom mathematical model is developed as shown in Fig. 3. In
the model, the pad is assumed as a mass m that performs planar motion in the vertical plane
without any rotation. Thus, translations in x and y directions are defined as the two degrees of
freedom. Furthermore, the brake disc is defined as a translating surface at constant velocity V
underneath the mass. The pad is attached to the common ground with four linear springs. The
two of these springs that represent stiffness of the brake pad k1 and k2 are positioned with
arbitrary angles θ1 and θ2 with respect to the horizontal axis. The other springs k3 and k4 are
parallel to the horizontal axis, and they represent elasticity of the clips between the pad and
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Fig. 2. The flowchart of the study

Fig. 3. Schematics of the nonlinear two degree of freedom mathematical model

the caliper. The contact between the pad and the disc is defined as a point contact where the
stiffness at the contact interface is defined by another linear elastic element kc, which can only
generate a compressive force in y-direction. Furthermore, a pretension Lpre is defined on the
contact spring kc. The preload F is applied to springs k1 and k2 in order to mimic the effect of
hydraulic brake pressure.

The dynamic friction coefficient µ at the pad/disc contact interface is obtained experimen-
tally in a mass-sliding belt experiment (Fig. 4a), which has a similar structure to the model
shown in Fig. 3. In this experiment, a mass is pushed on the sliding belt via two telescopic
arms, which are supported by the springs k1 and k2, see Fig. 3. Note that the configurations of
these springs are kept intact during the experiments, i.e., θ = (27/36)π. The experiments are
performed at different belt speeds and preload conditions. Restoring forces in springs k1 and k2
are measured with two force transducers, and the moment of the electric motor that drives the
sliding belt is acquired from the inverter. Thus, the tangential force at the mass/sliding belt
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interface is obtained, and the instantaneous dynamic friction coefficient µi(t) at the contact
interface is calculated from the measured data as follows

µi(t) =
Ft(t)

Fl(t) sin θ + Fr(t) sin θ + 2F sin θ
(2.1)

where Ft(t) is the instantaneous tangential force at the contact interface, and Fl(t) and Fr(t) are
the instantaneous normal forces on the left and right telescopic arms, respectively. Furthermore,
the term F is the constant preload applied to springs k1 and k2, respectively. In summary, the
numerator in Eq. (2.1) is the tangential force at the brake pad and brake disc contact interface,
which is calculated by dividing the measured motor torque by the radius of the drum. The
denominator in Eq. (2.1) represents the total normal load at the brake pad and brake disc
contact interface, which has a constant (due to the preload F ) and time varying (due to Fl(t)
and Fr(t)) components. Though the forces F , Fl(t) and Fr(t) are not perpendicular to the disc
surface, thus their projections on the vertical axis are calculated by multiplying these forces by
sin θ.

Based on measurements, it is observed that the estimated dynamic friction coefficient µi(t)
at a given parameter set does not alter significantly during tests. Hence, an average dynamic
friction coefficient µ is defined by the mean value theorem for integrals in the closed interval of
[0, T ] as below (Sawczuk et al., 2021a,b)

µ =
1

T

T
∫

0

µi(t) dt (2.2)

Consequently, the dynamic friction coefficient is experimentally obtained as shown in Fig. 4b
for two different preload levels, i.e., F = 50N and F = 200N with respect to V . Here, it should
be emphasized that a two-dimensional linear regression model is utilized for derivation of the
friction model depicted in Fig. 4b.

Fig. 4. (a) Mass-sliding belt test rig, (b) change of the dynamic friction coefficient with respect to V at
two different preload levels

The nonlinear governing equations of the system shown in Fig. 3 are derived by calculating
the elastic force vectors for each spring by Hooke’s law. These force vectors are then projected
on the x and y axes, and the force equilibria in these directions are obtained as shown in Eqs.
(2.3)
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mẍ+ k1

(
√

x2 + y2 − 2L1(x cos θ + y sin θ + L21 − L1
)

(x− L1 cos θ)
√

x2 + y2 − 2L1(x cos θ + y sin θ) + L21

+ k2

(
√

x2 + y2 + 2L2(x cos θ − y sin θ) + L22 − L2
)

(x+ L2 cos θ)
√

x2 + y2 + 2L2(x cos θ − y sin θ) + L
2
2

+ (k3 + k4)x+
1

2
kcµ(y − Lpre)[1 + sgn (Lpre − y)] = 0

mÿ + k1

(
√

x2 + y2 − 2L1(x cos θ + y sin θ) + L21 − L1
)

(y − L1 sin θ)
√

x2 + y2 − 2L1(x cos θ + y sin θ) + L21

+ k2

(
√

x2 + y2 + 2L2(x cos θ − y sin θ) + L22 − L2
)

(y − L2 sin θ)
√

x2 + y2 + 2L2(x cos θ − y sin θ) + L22

+
1

2
kc(y − Lpre)[1 + sgn (Lpre − y)] + 2F sin θ = 0

(2.3)

The terms L1 and L2 in Eqs. (2.3) are the free lengths of the springs k1 and k2, respectively.
Furthermore, the following nonlinearities are considered in the mathematical model: 1) Kine-
matic nonlinearity due to θ1 and θ2; 2) Contact loss nonlinearity due to piecewise linear ‘sgn’
function; and 3) Dynamic friction coefficient model µ obtained experimentally. For detailed
derivation of the nonlinear governing equations, readers should refer to (Sen and Singh, 2021)

3. Linearization of the nonlinear governing equations

The stability of the system is assessed with complex eigenvalue analysis, which requires lineariza-
tion of the governing equations. Consequently, the following assumptions are made in order to
obtain a simplified linear mathematical model. First, the velocity of the disc is assumed to be
greater than the velocity of the pad in the x direction, i.e., ẋ < V for any time. Thus, the
direction of the friction force vector does not change. Second, the pad and the disc are assumed
to be in perpetual contact, i.e., y < Lpre. Third, the nonlinear terms due to the angular configu-
ration θ in Eqs. (2.3) are linearized with Taylor series expansion around the point (x, y) = (0, 0).
Furthermore, the discontinuous piecewise linear ‘sgn’ function is approximated with a continu-
ous ‘tanh’ function as sgn (z) = tanh(σz), where σ is a regularizing factor (Oberst et al., 2013).
Finally, the linearized equations are obtained as follows

mẍ+ (Kaa + k3 + k4)x+ (Kab + µkc)y =
1

2
µkcLpre[tanh(σLpre) + 1]

mÿ +Kabx+ (Kbb + kc)y = −2F sin θ +
1

2
µkcLpre[tanh(σLpre) + 1]

(3.1)

where Kaa, Kab and Kbb are defined as

Kaa = (k1 + k2) cos
2 θ Kab = (k1 − k2) sin θ cos θ

Kbb = (k1 + k2) sin
2 θ

(3.2)
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Using the above equations, the static equilibrium point (x∗, y∗) is obtained as

x∗ =
1

(Kaa + k3 + k4)(Kbb + kc)−Kab(Kab + µkc)

[

(Kbb + kc)
(1

2
µkcLpre[tanh(σLpre) + 1]

)

−

(

−2F sin θ +
1

2
µkcLpre[tanh(σLpre) + 1]

)

(Kab + µkc)
]

y∗ =
1

(Kaa + k3 + k4)(Kbb + kc)−Kab(Kab + µkc)

[

(Kaa + k3 + k4)
(

−2F sin θ

+
1

2
µkcLpre[tanh(σLpre) + 1]

)

−Kab
(1

2
µkcLpre[tanh(σLpre) + 1]

)]

(3.3)

Finally, the linearized equations are shifted to the static equilibrium position via linear
transformation (x, y) = (x + x∗, y + y∗), and the Jacobian matrix is obtained to be used in
complex eigenvalue analysis.

4. Stability analysis with complex eigenvalue solution

The stability of the system is assessed by the complex eigenvalue solution of the Jacobian
matrix of the linearized model. Thus, the instability of the system is attributed to the complex
eigenvalue λ with a positive real part. Particularly, the effect of preload F and disc velocity V
on the instability is investigated. In the analysis, the angular configuration of k1 and k2 are
selected to be θ = (27/36)π as in the experiments, and the complex eigenvalues are obtained
over a broad range of brake pad stiffness levels (k1 and k2). Note that k1 = k2 is also assumed.
The real and imaginary parts of the complex eigenvalues are depicted in Figs. 5-8 for different
preload levels and disc velocities.

Fig. 5. Real and imaginary parts of the complex eigenvalues for F = 50N and V = 1m/s: (a) Re(λ),
(b) Im(λ)

As evident from Figs. 5-8, the system exhibits mode coupling behavior, i.e., the imaginary
parts of the eigenvalues are coupled for one specific value of brake pad stiffness, which is called
the critical pad stiffness kcr, and the real part of one eigenvalue becomes positive. This dynamic
behavior triggers the squeal phenomenon. Figure 5 shows the real and imaginary parts of the
complex eigenvalues for F = 50N and V = 1m/s. As seen in Figs. 5a and 5b, the system exhibits
two purely imaginary eigenvalues up to k1 = k2 = 5.16 · 10

7 N/m. Thus, kcr = 5.16 · 10
7 N/m,

and the vibration modes occur at two distinct frequencies. At the point, when k1 = k2 =
5.16 · 107N/m, the vibration modes get coupled, and the real part of one of the eigenvalues
becomes positive. Hence the system switches to an unstable state. In the second analysis depicted
in Fig. 6, the value of belt velocity is increased to V = 4m/s while keeping F intact. Similarly,
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Fig. 6. Real and imaginary parts of the complex eigenvalues for F = 50N and V = 4m/s: (a) Re(λ),
(b) Im(λ)

Fig. 7. Real and imaginary parts of the complex eigenvalues for F = 200N and V = 1m/s: (a) Re(λ),
(b) Im(λ)

Fig. 8. Real and imaginary parts of the complex eigenvalues for F = 200N and V = 4m/s: (a) Re(λ),
(b) Im(λ)

the mode coupling behavior is again observed though for a higher kcr, which is 6.71 · 10
7 N/m.

The next analysis is run at F = 200N and V = 1m/s (Fig. 7), and it is seen that the value of kcr
is reduced to 2.10·107 N/m. Thus, the system is stable for the case shown with the yellow dashed
line, but it performs unstable dynamics for the cases represented with blue and red dashed lines.
In the last analysis (Fig. 8), which is run at F = 200N and V = 4m/s operating conditions,
kcr is increased to 4.97 · 10

7N/m. Therefore, it is concluded that the increase of the preload
extends the unstable regime, i.e., an increase in the preload leads to reduction in kcr. On the
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contrary, an increase at a given disc velocity reduces the unstable regime by increasing the value
of kcr.

In the next analysis, the effect of preload F on kcr is investigated at two different disc
velocities, and the change of kcr with respect to F is depicted in Fig. 9. As seen in figures,
the value of kcr decreases with an increase of the preload. Furthermore, the area below the kcr
curves represent a stable region, and the area above the kcr curves are the regions of instability.
Though, at a given preload value, the critical pad stiffness value is increased with an increase
of the disc velocity. Furthermore, observe the three vertical lines (solid yellow, dashed blue and
dotted red) in Fig. 9, which correspond to k1 = k2 = 2 · 10

7N/m, k1 = k2 = 4 · 10
7 N/m and

k1 = k2 = 6 · 10
7N/m, respectively. For the case of V = 1m/s (Fig. 9a), the preload values,

where the stable/unstable regime transitions occur, are found to be 248N, 79N and 27N. Note
that the system is in an unstable regime when the preload is higher than the preload value
where the transition occurs. Thus, for F = 50N, the system exhibits unstable dynamics only
for k1 = k2 = 6 · 10

7 N/m. Though, the unstable dynamic behavior is observed for k1 = k2 =
4 · 107N/m and k1 = k2 = 6 · 10

7N/m when the preload is F = 200N. This is also evident from
vertical lines depicted in Figs. 5 and 7. For an other disc velocity V = 4m/s, it is seen in Fig. 9b
that unstable dynamic behavior is observed only for k1 = k2 = 6 · 10

7N/m when the preload
is greater than 128N. Thus, for F = 50N, the system is always in a stable state for the given
k1 and k2 values. Though, when F = 200N, unstable dynamic behavior is now observed. This
claim is also observed from the vertical lines in Figs. 6 and 8.

Fig. 9. The effect of preload on the critical pad stiffness: (a) V = 1m/s, (b) V = 4m/s

5. Numerical solution of nonlinear governing equations

In order to assess the results of linear stability analysis, the nonlinear governing equations
are solved numerically with the 4th order explicit Runge-Kutta technique, and the responses
in the time domain are obtained for the same operating conditions. Furthermore, the time
domain responses are transformed to the frequency domain in order to assess the existence of
nonlinearities. The time domain results are obtained for the three pad stiffness values of the
prior analysis of Figs. 5-8, i.e., k1 = k2 = 2 · 10

7N/m, k1 = k2 = 4 · 10
7N/m and k1 = k2 =

6 · 107N/m. Furthermore, the numerical results are obtained for the two preload levels, i.e.,
F = 50N and F = 200N. The frequency spectra for these cases are shown in Figs. 10a and 10b,
respectively. Note that the existence of super-harmonic peaks in the spectra are attributed to
the significant contribution of nonlinearities, at which the squeal behavior is expected to occur.
As seen from the spectra of Fig. 10a, the super-harmonic peaks arise only for the pad stiffness of
k1 = k2 = 6 ·10

7 N/m. Thus, it is claimed that it is highly possible to observe squeal behavior in
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this particular case. Note that these two cases are also found to be the unstable cases in Figs. 5
and 9a. Increasing the preload to 200N (Fig. 10b) makes the super-harmonic peaks emerge also
for k1 = k2 = 4 · 10

7 N/m. Thus, k1 = k2 = 4 · 10
7 N/m case also now becomes a candidate

at which the squeal occurrence is highly possible. Observe that these results are again coherent
with the results of linear stability analysis depicted in Figs. 7 and 9a. Therefore, it is seen that
similar dynamic behavior is observed with both stability analysis of the linearized model and
numerical solutions of the nonlinear governing equations.

Fig. 10. Frequency spectra obtained from the numerical solutions of nonlinear governing equations for
V = 1m/s: (a) F = 50N, (b) F = 200N

Note that the linear stability analysis is based on the assumption of perpetual contact be-
tween the pad and disc surfaces. Though, the nonlinear governing equations consider the surface
separation effect. In order to understand the effect of this simplification on the performance of
linear stability analysis, squeal frequencies are obtained with both approaches for different pad
stiffness values, and they are tabulated in Table 1. Here, the analysis is carried out for F = 300N
in order to guarantee squeal occurrence.

Table 1. Comparison of linear and nonlinear model results in terms of the squeal frequency
(V = 1 m/s and F = 300N)

Pad stiffness Squeal frequency [Hz] Error Contact loss
k1 = k2 [N/m] Nonlinear model Linear model [%] duration [s]

2 · 107 964 958 0.62 0

4 · 107 1095 1083 1.09 2.17

6 · 107 1148 1119 2.52 3.02

8 · 107 1302 1241 4.68 3.97

10 · 107 1682 1538 8.56 5.79

Errors listed in Table 1 are the absolute percentage errors of squeal frequencies obtained via
linear stability analysis with respect to the nonlinear model. Furthermore, the contact loss du-
rations, which are calculated from the numerical solutions of the nonlinear governing equations,
are also given in the table. Observe that the deviation between squeal frequencies increases as
the value of pad stiffness increases; the same trend is also observed for the contact loss duration,
which was also claimed by Aronov et al. (1984) based on their experimental studies. Hence, it is
concluded that the performance of linear stability analysis worsens as the nonlinear effects (i.e.,
surface separation) dominate the dynamics of the system.

The numerically calculated time domain responses of the interfacial contact force between
the brake pad and brake disc from the nonlinear model are depicted in Fig. 11 for two lev-
els of pad stiffness. In the first case (Fig. 11a), where a smaller pad stiffness is assumed
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(k1 = k2 = 2 · 10
7N/m), the contact force is found to be always greater than zero. Hence,

a perpetual contact is obtained at the contact interface, and the error on the predicted squeal
frequencies is minimal as seen in Table 1. In the second case, the pad stiffness is set to a higher
level (k1 = k2 = 10·10

7 N/m), and it is observed that the surface separation starts to occur at the
contact interface as evident from the time instances where the contact force is zero (Fig. 11b).
Consequently, the deviation between the predicted squeal frequencies increases.

Fig. 11. Time domain results of the nonlinear model for V = 1m/s and F = 300N):
(a) k1 = k2 = 2 · 10

7N/m, (b) k1 = k2 = 10 · 10
7N/m

Fig. 12. Peak displacement amplitudes of the mass in x axis with respect to preload at different belt
velocities: (a) k1 = k2 = 2 · 10

7N/m, (b) k1 = k2 = 4 · 10
7N/m, (c) k1 = k2 = 6 · 10

7N/m
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In another analysis, numerical solutions are obtained at different preload levels for the same
pad stiffness values of prior analyses. Furthermore, the results are obtained at two different levels
of the disc velocity. The peak displacement amplitudes are gathered and scattered in Fig. 12.
In the first case where k1 = k2 = 2 · 10

7N/m (Fig. 12a), it is seen that the peak displacement
amplitudes gradually increase for V = 4m/s. Though, a sudden increase is observed around
F = 250N at V = 1m/s. Comparing this result with Fig. 9a, it is seen that F = 250N is at
the vicinity of where the transition from the stable to unstable regime occurs. Similar results
are also observed for the case of k1 = k2 = 4 · 10

7 N/m (Fig. 12b). Though, now a sudden
increase in the displacement amplitude occurs around F = 80N for V = 1m/s. Note that the
stable to unstable regime transition occurs at F = 79N (Fig. 9a). Furthermore, the displacement
amplitudes gradually increase for V = 4m/s. These results are again in accordance with the
results of the linear stability analysis of Fig. 9b. In the last case, where k1 = k2 = 6 · 10

7N/m
(Fig. 12c), the peak displacement amplitudes now gradually increase only for V = 1m/s, while
a sudden amplitude jump occurs around F = 130N for V = 4m/s. As seen in Fig. 9b, this pad
stiffness value is the only one where unstable dynamic behavior is observed when the preload
level is greater than 128N, and this value is close to the preload level where the jump occurs in
Fig. 12c.

6. Conclusion

In this study, a nonlinear two degree of freedom mathematical model is developed for investiga-
tion of the brake squeal phenomenon with emphasis put on the brake pad stiffness. The nonlinear
governing equations are linearized with further assumptions, and stability of the system is in-
vestigated by complex eigenvalue analysis. Furthermore, friction characteristics at the pad/disc
contact interface are defined with a friction model derived through data obtained experimentally.
Hence, the effect of pad stiffness on stability of the system is investigated for different preloads
and belt velocities. Finally, the nonlinear governing equations are numerically solved for all op-
erating conditions, and the results are compared to the linear stability analysis. Furthermore,
the linear stability analysis of the predicted squeal frequencies are compared with the numerical
solutions of nonlinear governing equations. Some of the major findings of this study are listed
below:

• Mode coupling is found to be a significant mechanism that triggers unstable dynamic
behavior and leads to the brake squeal phenomenon.

• An increase in the preload level leads to reduction of the critical pad stiffness for all disc
velocities. Thus, it is concluded that the pad stiffness should be reduced at high preload
conditions in order to guarantee stable dynamic behavior.

• An increase in the belt velocity leads to an increase of the critical pad stiffness for the
same preload condition. Hence, the unstable region is found to be contracted as the disc
velocity increases.

• The squeal frequencies obtained via linear stability analysis and from numerically calcu-
lated time histories of nonlinear governing equations are found to be similar.

• The frequency spectra calculated from time histories of the nonlinear governing equations
exhibit super-harmonic peaks in the cases which are found to be unstable through linear
stability analysis. Thus, it is shown that a similar dynamic response is obtained with
both approaches, since the emergence of super-harmonic peaks is usually attributed to a
nonlinear dynamic response.

• It is observed that the surface separation effects become significant at high pad stiffness
levels.
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• The predicted squeal frequencies from linear stability analysis start to deviate from the
frequencies calculated from time histories of the nonlinear mathematical model as the
surface separation effects become significant.

• The peak displacement amplitudes calculated numerically from the nonlinear governing
equations exhibit a sudden jump at the boundaries of stable to unstable regime transition,
which is attributed to the high amplitude oscillation behavior of the squeal response.

In conclusion, it is seen that the linear stability analysis successfully predicts the dynamic
behavior of the system. Though the estimation of the squeal frequency may exhibit slight errors
based on the strength of nonlinearity.

This study can be expanded by validating the major findings with experimentation. For
example, experiments can be conducted at high pad stiffness levels, and the response of the
system can be investigated experimentally. This requires the following slight modifications of
the current experiment: 1) Two extra telescopic arms on both sides of the mass should be added
in the experiment in order to mimic the developed mathematical model; and 2) Experiments at
which different levels of spring stiffness are utilized should be performed. Though, in the current
study an experimental validation is out of the scope. Thus, this validation remains as a future
work.

References

1. Aronov V., D’Souza A.F., Kalpakjian S., Shareef I., 1984, Interactions among friction,
wear, and system stiffness – Part 1: Effect of normal load and system stiffness, Journal of Tribology,
106, 54-59

2. Belhocine A., Ghazaly N.M., 2016, Effects of Young’s modulus on disc brake squeal using
finite element analysis, International Journal of Acoustics and Vibration, 21, 3, 292-300

3. Dakel M., Sinou J.J., 2017, Stability and nonlinear self-excited friction-induced vibrations for
a minimal model subjected to multiple coalescence patterns, Journal of Vibroengineering, 19, 1,
604-628

4. Ghorbel A., Zghal B., Abdennadher M., Walha L., Haddar M., 2020, Investigation of
friction-induced vibration in a disk brake model, including mode-coupling and gyroscopic mech-
anisms, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile
Engineering, 234, 2-3, 887-896

5. Hochlenert D., 2009, Nonlinear stability analysis of a disc brake model, Nonlinear Dynamics,
58, 63-73

6. Hoffman N., Fischer M., Allgaier R., Gaul L., 2002, A minimal model for studying prop-
erties of the mode-coupling type instability in friction induced oscillations, Mechanics Research
Communications, 29, 4, 197-205

7. Jacobsson H., 2003, Aspects of disc brake judder, Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering, 217, 6, 419-430

8. Li Z., Ouyang H., Guan Z., 2016, Nonlinear friction-induced vibration of a slider-belt system,
Journal of Vibration and Acoustics (ASME), 138, 4, 041006

9. Liu N., Ouyang H., 2020, Friction-induced vibration considering multiple types of nonlinearities,
Nonlinear Dynamics, 102, 20572075

10. Kang J., 2018, Lyapunov exponent of friction-induced vibration under smooth friction curve,
Journal of Mechanical Science and Technology, 32, 8, 3563-3567

11. Kinkaid N.M., O’Reilly O.M., Papadopoulos P., 2003, Automotive disc brake squeal, Journal
of Sound and Vibration, 267, 105-166



232 A. Yavuz, O.T. Sen

12. Oberst S., Lai J.C.S., Marburg S., 2013, Guidelines for numerical vibration and acoustic
analysis of disc brake squeal using simple models of brake systems, Journal of Sound and Vibration,
332, 2284-2299

13. Papinniemi A., Lai J.C.S., Zhao J.Y., Loader L., 2002, Brake squeal: A literature review,
Applied Acoustics, 63, 391-400
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